

Class probabilities predicted by most multiclass classifiers are uncalibrated, often tending towards over-confidence. With neural networks, calibration can be improved by temperature scaling, a method to learn a single corrective multiplicative factor for inputs to the last softmax layer. On non-neural models the existing methods apply binary calibration in a pairwise or one-vs-rest fashion. We propose a natively multiclass calibration method applicable to classifiers from any model class, derived from Dirichlet distributions and generalising the beta calibration method from binary classification. It is easily implemented with neural nets since it is equivalent to log-transforming the uncalibrated probabilities, followed by one linear layer and softmax.

Contributions

- Parametric multi-class calibration method
- General-purpose (acts in class probability space)
- Easy to implement as a neural layer or as multinomial logistic regression on log-transformed class probabilities

> **ODIR** (Off-Diagonal and Intercept Regularisation):

A new regularization method for Dirichlet calibration and matrix scaling

Clarifications in calibration evaluation of multi-class classifiers.

Is my multiclass classifier calibrated?

Multiclass classifer: $\hat{\mathbf{p}}(X) = (\hat{p}_1(X), \dots, \hat{p}_k(X)) \in \Delta_k \subset [0, 1]^k$ Actual class: $Y \in \{1, \dots, k\}$ Multiclass-calibrated: $P(Y = i \mid \hat{\mathbf{p}}(X) = \mathbf{q}) = q_i$ for $\mathbf{q} \in \Delta_k$; $i = 1, \dots, k$ Classwise-calibrated: $P(Y = i | \hat{p}_i(X) = q_i) = q_i$ for $q_i \in [0, 1]; i = 1, ..., k$ Confidence-calibrated: $P(Y = \arg \max \hat{\mathbf{p}}(X) \mid \max \hat{\mathbf{p}}(X) = c) = c$ for $c \in [0, 1]$

0.8

How often are classifiers classwise-calibrated?

svc-rbf

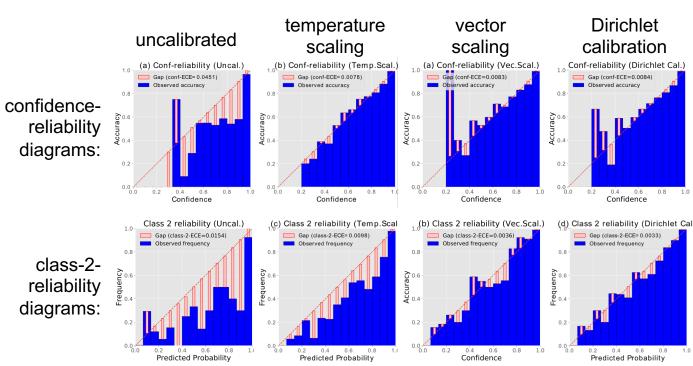
forest -

logistic

0.0

0.2 0.4 0.6

Proportion (out of 500)


The proportion of cases where the null hypothesis that the model is classwisecalibrated was accepted, across 20 datasets (5x5-fold cross-validation on each)

[1] J. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers, pages 61–74, MIT Press, 2000.

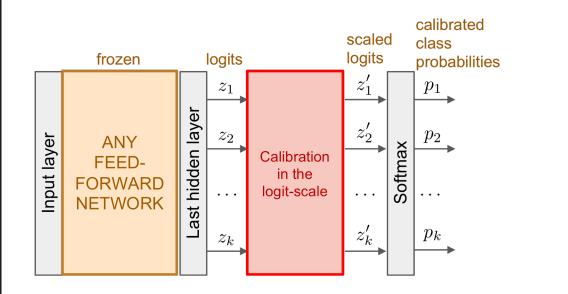
[2] M. Kull, T. Silva Filho, P. Flach. Beta calibration: a well-founded and easily mplemented improvement on logistic calibration for binary classifiers. AISTATS 2017 [3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. ICML 2017

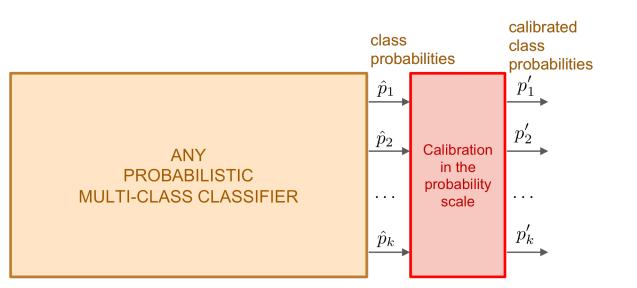
Example on a neural network

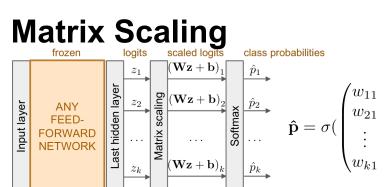
ResNet Wide 32 network trained on CIFAR 10:

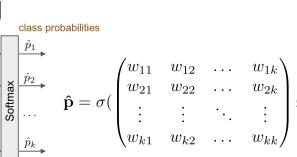
Logit space Derived from Gaussian distribution Platt scaling^[1] (+ vector scaling temperature scaling

Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach

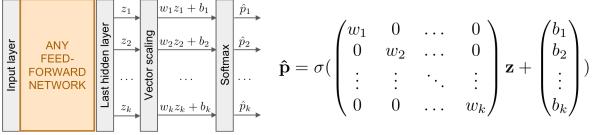

Class probability space Derived from Beta distribution Beta calibration^[2] constrained variants) Derived from Dirichlet distribution Matrix scaling^[3] Dirichlet calibration


constrained variants)


How to calibrate a multiclass classifier:


1. Choose logit-space or class probability space

2. Choose a calibration map family



Dirichlet Calibration = matrix scaling on pseudo-logits

ANY PROBABILISTIC MULTI-CLASS CLASSIFIER

Vector Scaling

Temperature Scaling

$\hat{\mathbf{p}} = \sigma \begin{pmatrix} 1/t & 0 & \dots & 0 \\ 0 & 1/t & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 1/t \end{pmatrix} \mathbf{z} + \begin{pmatrix} \mathbf{z} \\ \mathbf{z}$

ANY PROBABILISTIC

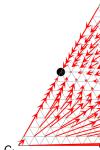
MULTI-CLASS CLASS

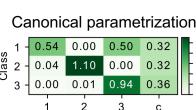
Single-param. Dirichlet Cal. = temp. scaling on pseudo-logits

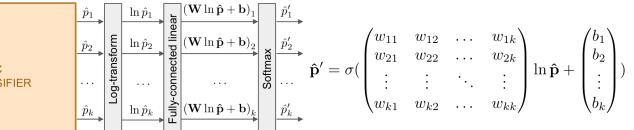
ANY PROBABILISTIC MULTI-CLASS CLASSI

3. Fit the calibration map

by minimising cross-entropy on the validation data and optionally regularise (L2 or ODIR)


Derivations of calibration maps


 $\mathbf{z}(X) \mid Y = j \sim \text{Gaussian}(\mu^{(j)}, \sigma^2) \longrightarrow \text{Platt scaling}$ $\hat{\mathbf{p}}(X) \mid Y = j \sim \text{Beta}(\alpha^{(j)}, \beta^{(j)}) \longrightarrow \text{Beta calibration}$ $\hat{\mathbf{p}}(X) \mid Y = j \sim \text{Dirichlet}(\boldsymbol{\alpha}^{(j)}) \longrightarrow \text{Dirichlet calibration}$

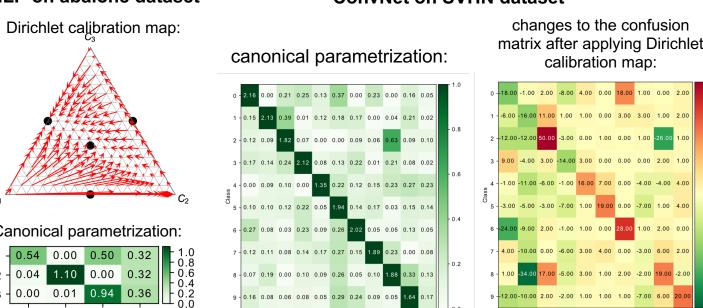

Parametrisations of Dirichlet calibration maps

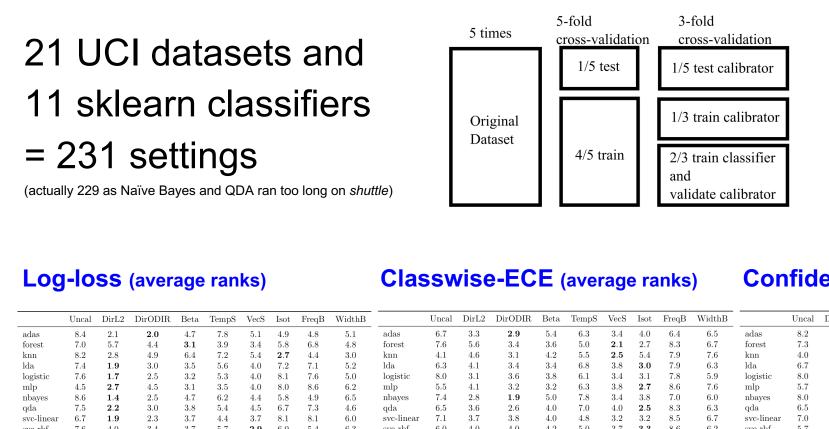
generative parametrisation: $\mu_{DirGen}(\mathbf{q}; \boldsymbol{\alpha}, \boldsymbol{\pi}) = \left(\pi_1 f_{Dir(\boldsymbol{\alpha}^{(1)})}(\mathbf{q}), \dots, \pi_k f_{Dir(\boldsymbol{\alpha}^{(k)})}(\mathbf{q})\right) / z$ linear parametrisation: $\mu_{DirLin}(\mathbf{q}; \mathbf{W}, \mathbf{b}) = \boldsymbol{\sigma}(\mathbf{W} \ln \mathbf{q} + \mathbf{b})$ canonical parametrisation: $\mu_{Dir}(\mathbf{q}; \mathbf{A}, \mathbf{c}) = \boldsymbol{\sigma}(\mathbf{A} \ln \frac{\mathbf{q}}{1/k} + \ln \mathbf{c})$

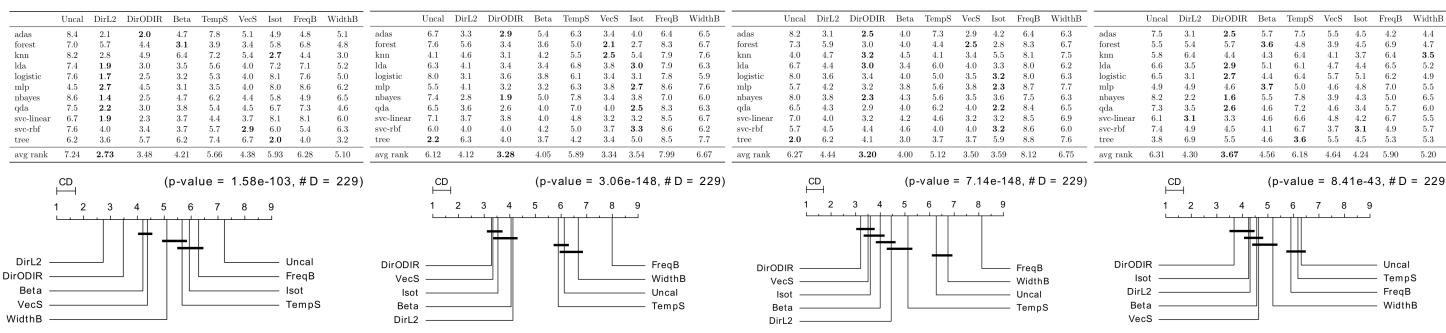
Diagonal Dirichlet Cal. = vector scaling on pseudo-logits

	$\ln \hat{p}_2$	Diricplet $w_2 \ln \hat{p}_2 + b_2$	$xeu \xrightarrow{\hat{p}_2'}$	$\begin{pmatrix} w_1 \\ 0 \end{pmatrix}$	$\begin{array}{ccc} 0 & \ldots \\ w_2 & \ldots \end{array}$	$\begin{pmatrix} 0\\0 \end{pmatrix}$	$\begin{pmatrix} b_1 \\ b_2 \end{pmatrix}$
$\frac{10}{30000000000000000000000000000000000$		$\begin{matrix} & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ $	Softmax \hat{p}'_k	$\hat{\mathbf{p}}' = \sigma(\left(\begin{array}{c} \vdots \\ 0\end{array}\right)$	$\begin{array}{c} \vdots & \ddots \\ 0 & \dots \end{array}$	$\left. \begin{array}{c} \vdots \\ w_k \end{array} \right) \ln \hat{\mathbf{p}} +$	$\left(\begin{array}{c} \vdots \\ b_k \end{array}\right)^{j}$

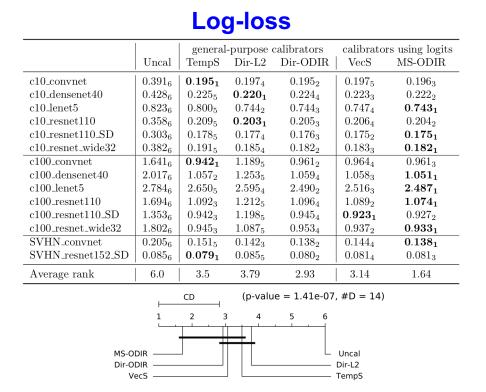
	\hat{p}_1		$\ln \hat{p}_1$	let	$w \ln \hat{p}_1$		\hat{p}'_1		,						
	\hat{p}_2	sform	$\ln \hat{p}_2$. Dirich	$w \ln \hat{p}_2$	лах	\hat{p}'_2		$\begin{pmatrix} w \\ 0 \end{pmatrix}$	$0 \\ w$	•••• •••	$\begin{pmatrix} 0\\ 0 \end{pmatrix}$		$\begin{pmatrix} 0\\ 0 \end{pmatrix}$	
C SIFIER		Log-transform		e-param		Softmax		$\mathbf{\hat{p}}' = \sigma($:	:	·.	÷	$\ln \mathbf{\hat{p}} +$:)
	\hat{p}_k		$\ln \hat{p}_k$	Single-	$w \ln \hat{p}_k$		\hat{p}'_k		$\setminus 0$	0	•••	w		(0/	

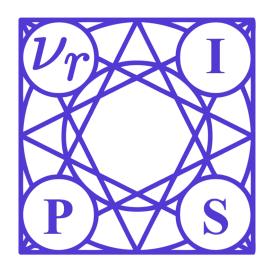

ODIR = Off-Diagonal and Intercept regularisation


Interpretation of Dirichlet calibration maps

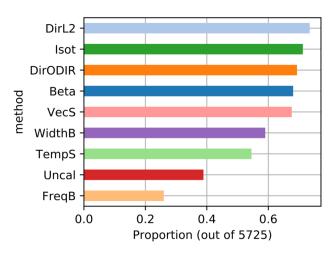

MLP on abalone dataset

ConvNet on SVHN dataset


Non-neural experiment

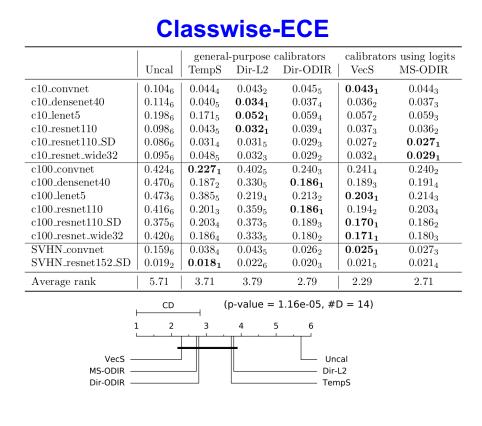

Deep neural networks experiment

14 CNNs for CIFAR-10, CIFAR-100, SVHN 14



Conclusion:

- \succ Dirichlet calibration:
- New parametric general-purpose multiclass calibration method
- Natural extension of two-class Beta calibration
- Easy to implement as a neural layer or as multinomial logistic regression on log-transformed class probabilities
- Best or tied best average rank across 21 datasets x 11 classifiers
- \succ ODIR regularisation:
- Dirichlet with ODIR is tied best in error rate Ο



The proportion of cas where the null hypothesi that the model is classwise calibrated was accepted across 229 settings (5x5-fold cross-validation on eac

Confidence-ECE (average ranks)

Calibration maps trained on 5000 validation instances with 5-fold-crossvalidation

	1		Error rate										
	Uncal	general TempS	-purpose o Dir-L2	calibrators Dir-ODIR	calibrato VecS	rs using logits MS-ODIR							
et	6.18_{2}	6.18_{2}	6.38_{6}	6.12_{1}	6.36_{5}	6.32_{4}							
net40	7.58_{5}	7.58_{5}	7.49_{1}	7.53_{4}	7.52_{3}	7.50_{2}							
	27.26_{5}	27.26_{5}	${\bf 25.25_1}$	25.44_2	25.49_{3}	25.50_4							
110	6.44_{1}	6.44_{1}	6.54_{6}	6.49_{4}	6.47_{3}	6.49_{4}							
110_SD	5.96_{5}	5.96_{5}	5.90_{4}	5.77_{1}	5.83_{3}	5.81_{2}							
wide32	6.07{5}	6.07_{5}	5.94_{4}	5.76_{2}	5.74_{1}	5.81_{3}							
net	26.12_1	26.12_1	30.96_{6}	26.22_3	26.56_4	26.60_5							
enet40	30.00_{3}	30.00_{3}	33.48_{6}	29.87_{2}	30.16_{5}	$\mathbf{29.61_1}$							
5	66.41_{5}	66.41_{5}	65.97_{4}	62.53_{2}	63.59_{3}	62.44_{1}							
t110	28.52_4	28.52_4	30.04_{6}	28.36_{1}	28.40_2	28.45_3							
t110_SD	27.17_{4}	27.17_{4}	31.43_{6}	26.96_{3}	26.50_{2}	26.42_{1}							
c100_resnet_wide32		26.18_4	27.69_{6}	26.07_{2}	26.08_{3}	26.06_{1}							
SVHN_convnet		3.83_{5}	3.43_{3}	3.35_1	3.52_{4}	3.37_{2}							
$\rm SVHN_resnet152_SD$		1.85_{2}	1.91_{6}	1.81_{1}	1.87_{4}	1.87_{4}							
Average rank		4.14	4.64	2.11	3.25	2.71							
CD (p-value = 6.77e-04, #D = 14)													
MS-OI	DIR ——	2 3											
	et 40 10_SD wide32 et net 40 110_SD .uide32 vnet tet152_SD nk Dir-Ol MS-Ol	$\begin{array}{c} \text{et40} & 7.58_5 \\ & 27.26_5 \\ 10 & 6.44_1 \\ 10_{\text{SD}} & 5.96_5 \\ \text{wide32} & 6.07_5 \\ \text{et} & 26.12_1 \\ \text{net40} & 30.00_3 \\ & 66.41_5 \\ 110 & 28.52_4 \\ 110_{\text{SD}} & 27.17_4 \\ \text{c.wide32} & 26.18_4 \\ \text{wnet} & 3.83_5 \\ \text{ret152_{SD}} & 1.85_2 \\ \text{nk} & 4.14 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	et40 7.585 7.585 7.491 7.534 27.265 27.265 25.251 25.442 10 6.441 6.441 6.546 6.494 10_SD 5.965 5.965 5.904 5.771 wide32 6.075 6.075 5.944 5.762 et 26.121 26.121 30.966 26.223 met40 30.003 30.003 33.486 29.872 6.66.415 66.415 65.974 62.532 110 28.524 28.524 30.046 28.361 110_SD 27.174 27.174 31.436 26.963 5.wide32 26.184 26.184 27.696 26.072 wnet 3.835 3.835 3.433 3.351 tet152_SD 1.852 1.852 1.916 1.811 mk 4.14 4.14 4.64 2.11 $\frac{CD}{MS-ODIR}$ (p-value = 6.77e-04,	et40 7.585 7.585 7.491 7.534 7.523 27.265 27.265 25.251 25.442 25.493 10 6.441 6.441 6.546 6.494 6.473 10.SD 5.965 5.965 5.904 5.771 5.833 wide32 6.075 6.075 5.944 5.762 5.741 et 26.121 26.121 30.966 26.223 26.564 met40 30.003 30.003 33.486 29.872 30.165 66.415 66.415 65.974 62.532 63.593 110 28.524 28.524 30.046 28.361 28.402 110.SD 27.174 27.174 31.436 26.963 26.502 2.wide32 26.184 26.184 27.696 26.072 26.083 vnet 3.835 3.835 3.433 3.351 3.524 tet152.SD 1.852 1.852 1.916 1.811 1.874 mk 4.14 4.14 4.64 2.11 3.25 CD (p-value = 6.77e-04, #D = 14) 1 2 3 4 5 6 Dir-DDIR MS-ODIR Dir-L2 TempS							

Matrix scaling with ODIR is tied best in log-loss

