Obtaining well-calibrated multiclass probabilities with Dirichlet calibration
Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach

Class probabilities predicted by most multiclass classifiers are uncalibrated, often tending towards over-confidence. With neural networks, calibration can be improved by temperature scaling, a method to learn a single corrective multiplicative factor for inputs to the last softmax layer. On non-neural models the existing methods apply binary calibration in a pairwise or one-vs-rest fashion. We propose a natively multiclass calibration method applicable to classifiers from any model class, derived from Dirichlet distributions and generalising the beta calibration method from binary classification. It is easily implemented with neural nets since it is equivalent to log-transforming the uncalibrated probabilities, followed by one linear layer and softmax.

Notion of calibration:
➢ A probabilistic classifier \(\hat{p} \) is multiclass-calibrated if for any prediction vector \(\mathbf{q} = (q_1, \ldots, q_k) \), the proportions of classes among all possible instances \(x \) getting the same prediction \(\hat{p}(x) = \mathbf{q} \) are:

\[
P(Y = i \mid \hat{p}(x) = \mathbf{q}) = q_i \quad \text{for } i = 1, \ldots, k.
\]

➢ Classwise-calibrated if:

\[
P(Y = i \mid \hat{p}(x) = q_i) = q_i.
\]

➢ Confidence-calibrated if:

\[
P(Y = \arg \max(p(X)) \mid \max(p(X)) = c) = c.
\]

Evaluation of calibration:
➢ Some empirical measures of calibration include:

\[
\text{confidence-ECE} = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{p}_i(B_i)|
\]

\[
\text{classwise-ECE} = \frac{1}{K} \sum_{j=1}^{K} \frac{1}{n} \sum_{i=1}^{n} |y_{i,j} - \hat{p}_{i,j}(B_{i,j})|
\]

➢ Other measures include well-known proper scoring rules, such as Brier score and log-loss

➢ Every proper loss is minimised by the canonical calibration function

\[
\mu(q) = (P(Y = 1 \mid \hat{p}(X) = \mathbf{q}), \ldots, P(Y = K \mid \hat{p}(X) = \mathbf{q}))
\]

Temperature scaling:
➢ Temperature scaling learns a temperature parameter \(t > 0 \) which decreases \((t > 1)\) or increases \((t < 1)\) the confidence of a model with softmax output

\[
\tilde{p}(x) = \frac{1}{Z_t} e^{\frac{-E}{t}}
\]

Dirichlet calibration:
➢ We consider the distribution of prediction vectors \(p(x) \) separately on instances of each class, and assume these are Dirichlet distributions with different parameters:

\[
\tilde{p}(x) = \frac{1}{Z_t} e^{\frac{-E}{t}}
\]

Evaluation of calibration:
➢ Some empirical measures of calibration include:

\[
\text{confidence-ECE} = \frac{1}{n} \sum_{i=1}^{n} |y_i(B_i) - \hat{p}_i(B_i)|
\]

\[
\text{classwise-ECE} = \frac{1}{K} \sum_{j=1}^{K} \frac{1}{n} \sum_{i=1}^{n} |y_{i,j}(B_{i,j}) - \hat{p}_{i,j}(B_{i,j})|
\]

➢ Other measures include well-known proper scoring rules, such as Brier score and log-loss

➢ Every proper loss is minimised by the canonical calibration function

\[
\mu(q) = (P(Y = 1 \mid \hat{p}(X) = \mathbf{q}), \ldots, P(Y = K \mid \hat{p}(X) = \mathbf{q}))
\]

Non-neural experiment:
➢ 21 datasets and 11 classifiers = 231 settings

➢ 6 calibration methods:

➢ Best or tied best performance

Deep Neural experiment:
➢ 3 datasets CIFAR-10, CIFAR-100, SVHN

➢ 11 convolutional NNs

➢ 3 pretrained CNNs

➢ 5 calibration methods:

➢ 8 evaluation measures

➢ 5-fold-crossval.

Conclusion:
➢ Dirichlet calibration: New parametric general-purpose multiclass calibration method

➢ Natural extension of two-class Beta calibration

➢ Easy to implement with multinomial logistic regression on log-transformed class probabilities

➢ Advances state-of-the-art on Neural Networks by introducing ODIR regularisation

Future work:
➢ Which neural architectures and training methods have temperature scaling as a canonical calibration function

➢ Use other distributions of the exponential family

➢ Investigate scores coming from mixtures of distributions per class