Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach

NeurIPS 2019

Contributions

New parametric calibration method:

New regularization method for matrix scaling (and for Dirichlet calibration):

ODIR - Off-Diagonal and Intercept Regularisation

Multi-class classifier evaluation:

Confidence-calibrated Classwise-calibrated Multiclass-calibrated Confidence-reliability diagram Classwise-reliability diagrams

Confidence-ECE Classwise-ECE

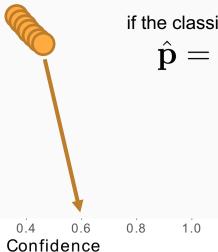
a classifier with 60% accuracy

on a set of instances

a classifier with 60% accuracy on a set of instances 0.0 0.2 Confidence

a classifier with 60% accuracy

on a set of instances



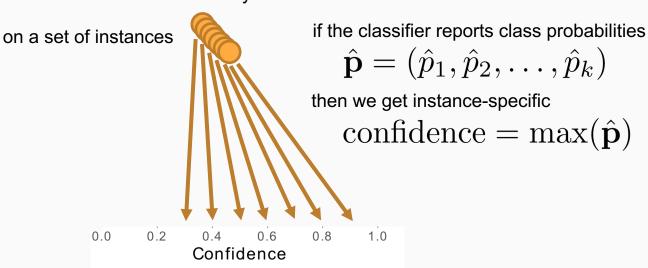
if the classifier reports class probabilities

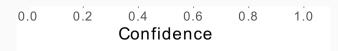
$$\hat{\mathbf{p}} = (\hat{p}_1, \hat{p}_2, \dots, \hat{p}_k)$$

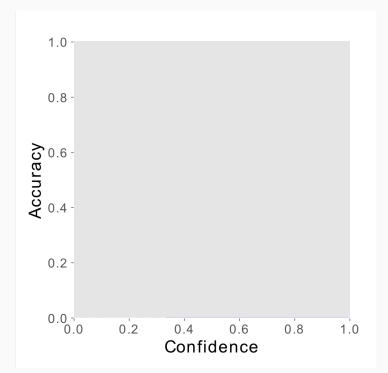
0.0

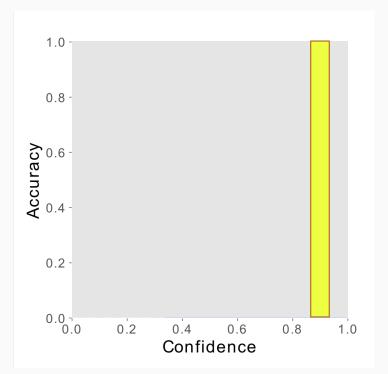
0.2

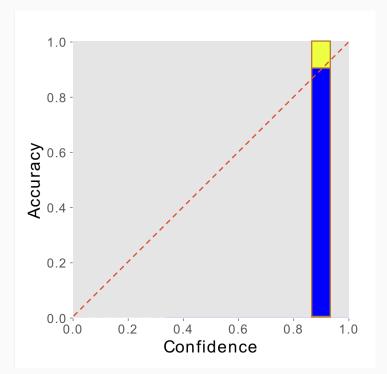
a classifier with 60% accuracy

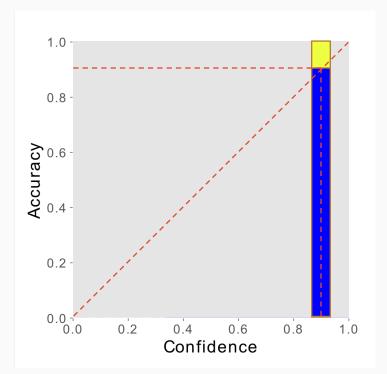


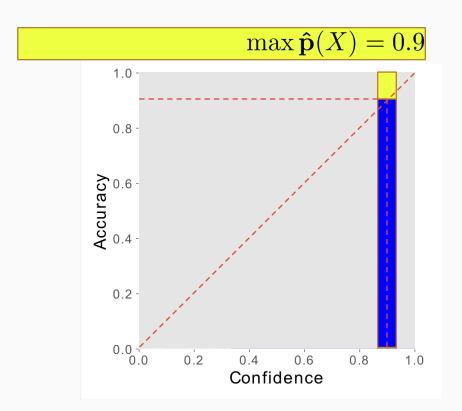


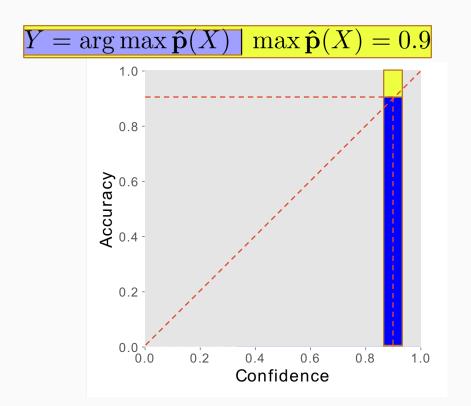




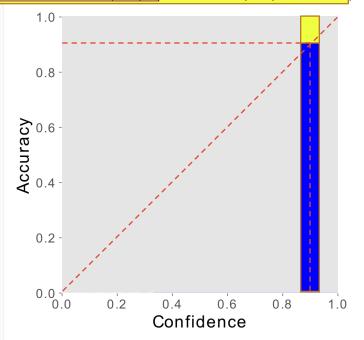








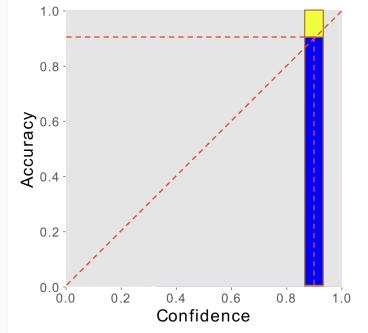
$$P(Y = \arg \max \hat{\mathbf{p}}(X) \mid \max \hat{\mathbf{p}}(X) = 0.9) = 0.9$$



$$P(Y = \arg \max \hat{\mathbf{p}}(X) \mid \max \hat{\mathbf{p}}(X) = 0.9) = 0.9$$

Confidence-calibrated:

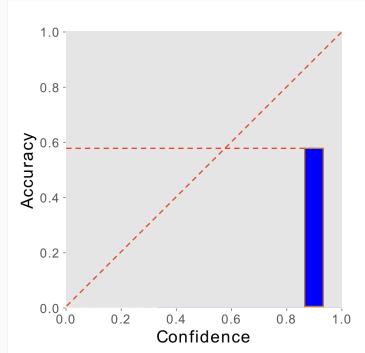
$$P(Y = \arg \max \hat{\mathbf{p}}(X) \mid \max \hat{\mathbf{p}}(X) = c) = c$$



Deep nets are usually over-confident

Confidence-calibrated:

$$P(Y = \arg \max \mathbf{\hat{p}}(X) \mid \max \mathbf{\hat{p}}(X) = c) = c$$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

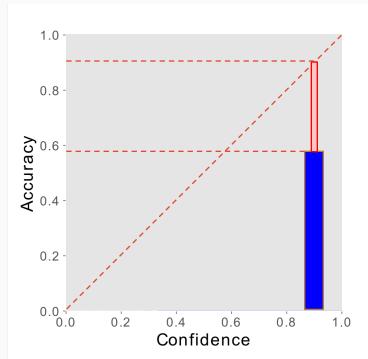
Overall: 94%

At 90% confidence: 58%

Deep nets are usually over-confident

Confidence-calibrated:

 $P(Y = \arg \max \mathbf{\hat{p}}(X) \mid \max \mathbf{\hat{p}}(X) = c) = c$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

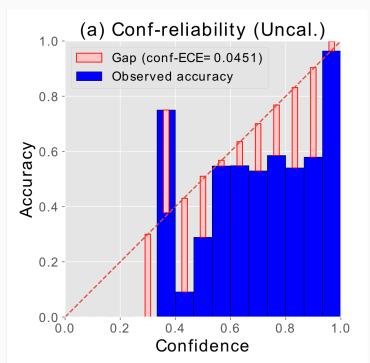
Overall: 94%

At 90% confidence: 58%

Example: uncalibrated predictions

Confidence-calibrated:

 $P(Y = \arg \max \hat{\mathbf{p}}(X) \mid \max \hat{\mathbf{p}}(X) = c) = c$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

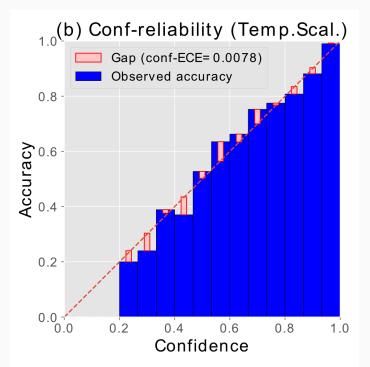
Overall: 94%

At 90% confidence: 58%

Example: after calibration with temperature scaling

Confidence-calibrated:

 $P(Y = \arg \max \mathbf{\hat{p}}(X) \mid \max \mathbf{\hat{p}}(X) = c) = c$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

Overall: 94%

At 90% confidence: 58%

Accuracy after Temp.Scal:

Overall: 94%

At 90% confidence: 88%

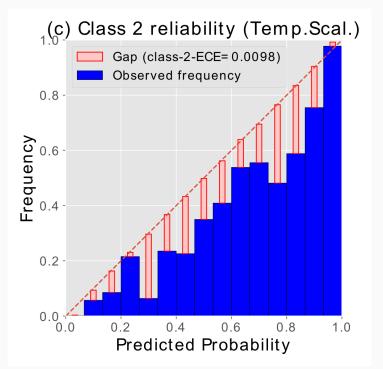
Example: after calibration with temperature scaling

Confidence-calibrated:

$$P(Y = \arg \max \mathbf{\hat{p}}(X) \mid \max \mathbf{\hat{p}}(X) = c) = c$$

Classwise-calibrated:

$$P(Y = i \mid \hat{p}_i(X) = c) = c$$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

Overall: 94%

At 90% confidence: 58%

Accuracy after Temp.Scal:

Overall: 94%

At 90% confidence: 88% At 90% class 2 prob: 76%

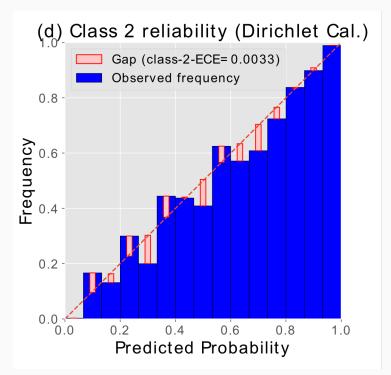
Example: after calibration with Dirichlet calibration

Confidence-calibrated:

$$P(Y = \arg\max \mathbf{\hat{p}}(X) \mid \max \mathbf{\hat{p}}(X) = c) = c$$

Classwise-calibrated:

$$P(Y = i \mid \hat{p}_i(X) = c) = c$$



Experimental setup:

CIFAR-10 ResNet Wide 32

Accuracy:

Overall: 94%

At 90% confidence: 58%

Accuracy after Temp.Scal:

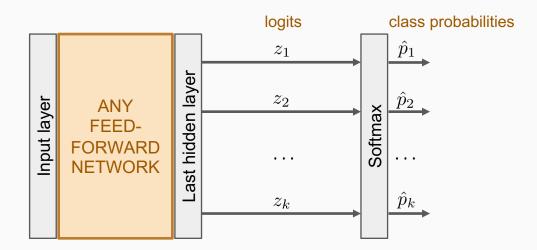
Overall: 94%

At 90% confidence: 88% At 90% class 2 prob: 76%

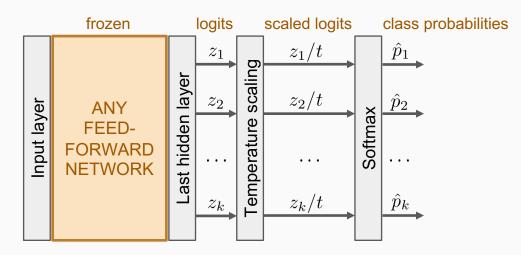
Accuracy after Dir.Calib:

At 90% class 2 prob: 90%

How to calibrate a multi-class classifier?



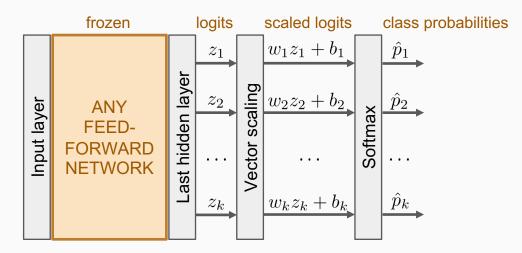
Temperature scaling



Parameters: $t \in \mathbb{R}$

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. ICML 2017

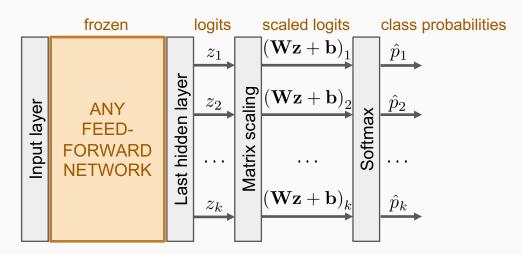
Vector scaling



Parameters: $(\mathbf{w}, \mathbf{b}) \in \mathbb{R}^{k+k}$

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. ICML 2017

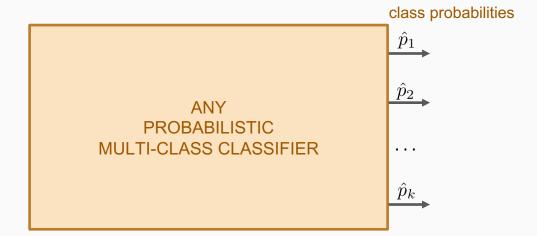
Matrix scaling



Parameters: $(\mathbf{W}, \mathbf{b}) \in \mathbb{R}^{k \times k + k}$

C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. ICML 2017

Dirichlet calibration can calibrate any classifiers



Parametric calibration methods

	Logit space	Class probability space		
Binary classification	Platt scaling ^[1]	Derived from Beta distribution Beta calibration ^[2] (+ constrained variants)		
Multi-class classification				

[1] J. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers, pages 61–74, MIT Press, 2000.

[2] M. Kull, T. Silva Filho, P. Flach. Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. AISTATS 2017

Parametric calibration methods

	Logit space	Class probability space	
Binary classification Derived from Gaussian distribution Platt scaling ^[1]		Derived from Beta distribution Beta calibration ^[2]	
		(+ constrained variants)	
		Derived from Dirichlet distribution	
Multi-class classification		Dirichlet calibration	
		(+ constrained variants)	

[1] J. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers, pages 61–74, MIT Press, 2000.

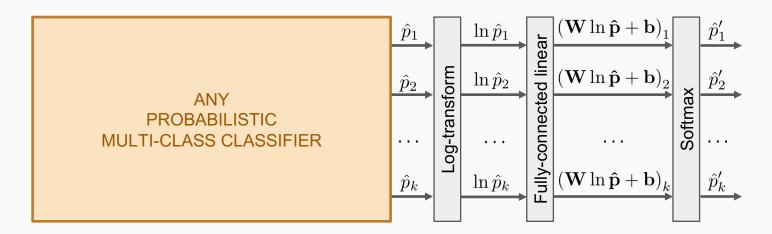
[2] M. Kull, T. Silva Filho, P. Flach. Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. AISTATS 2017

Parametric calibration methods

	Logit space	Class probability space	
	Derived from Gaussian distribution	Derived from Beta distribution	
Binary classification	Platt scaling ^[1]	Beta calibration ^[2]	
		(+ constrained variants)	
		Derived from Dirichlet distribution	
Multi-class classification	Matrix scaling ^[3]	Dirichlet calibration	
	(+ vector scaling, temperature scaling)	(+ constrained variants)	

- [1] J. Platt. Probabilities for SV machines. In Advances in Large Margin Classifiers, pages 61–74, MIT Press, 2000.
- [2] M. Kull, T. Silva Filho, P. Flach. Beta calibration: a well-founded and easily implemented improvement on logistic calibration for binary classifiers. AISTATS 2017
- [3] C. Guo, G. Pleiss, Y. Sun, and K. Q. Weinberger. On Calibration of Modern Neural Networks. ICML 2017

Dirichlet calibration



Parameters: $(\mathbf{W}, \mathbf{b}) \in \mathbb{R}^{k \times k + k}$

Regularisation:

- L2
- ODIR (Off-Diagonal and Intercept Regularisation)

Non-neural experiments

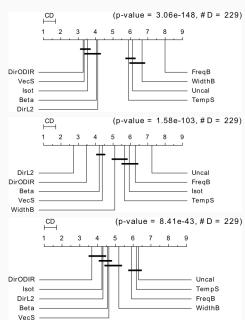
• 21 datasets x 11 classifiers = 231 settings

Average rank

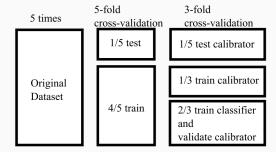
o Classwise-ECE

o Log-loss

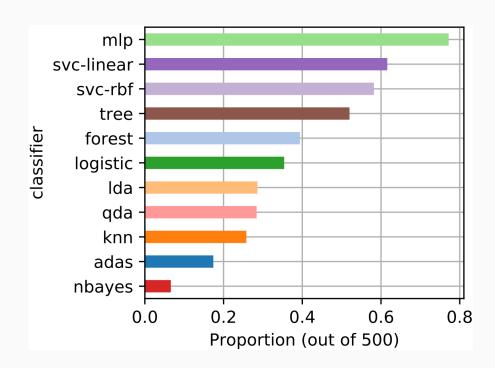
o Error rate



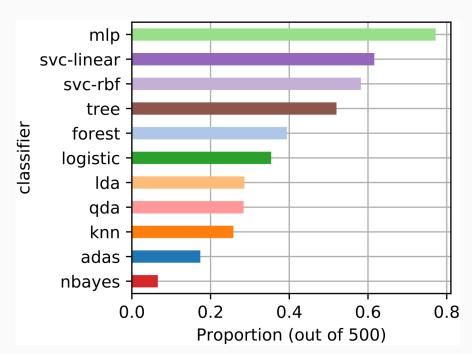
	$n_samples$	n_{-} features	n_classes
dataset			
abalone	4177	8	3
balance-scale	625	4	3
car	1728	6	4
cleveland	297	13	5
dermatology	358	34	6
glass	214	9	6
iris	150	4	3
landsat-satellite	6435	36	6
libras-movement	360	90	15
mfeat-karhunen	2000	64	10
mfeat-morphological	2000	6	10
mfeat-zernike	2000	47	10
optdigits	5620	64	10
page-blocks	5473	10	5
pendigits	10992	16	10
segment	2310	19	7
shuttle	101500	9	7
vehicle	846	18	4
vowel	990	10	11
waveform- 5000	5000	40	3
veast	1484	8	10

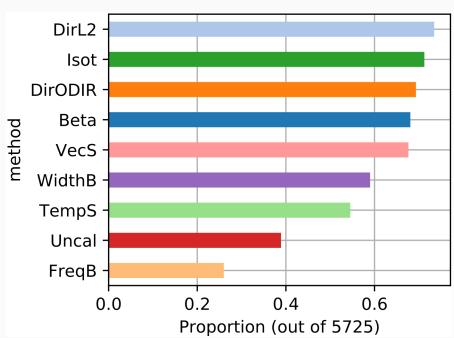


Which classifiers are calibrated?



Which classifiers are calibrated?





Deep Neural Networks Experiments: Settings

- 3 datasets: CIFAR-10, CIFAR-100, SVHN
- 11 convolutional NNs + 3 pretrained

Neural experiments

- Datasets: CIFAR-10, CIFAR-100, SVHN
- 11 CNNs trained as in Guo et al + 3 pretrained

Classwise-ECE

	3.433W.33 E3E					
		general-purpose calibrators		calibrators using logits		
	Uncal	TempS	Dir-L2	Dir-ODIR	VecS	MS-ODIR
c10_convnet	0.1046	0.0444	0.043_{2}	0.045_{5}	0.043_{1}	0.0443
$c10$ _densenet40	0.114_{6}	0.040_{5}	0.034_{1}	0.037_{4}	0.036_2	0.037_{3}
$c10_lenet5$	0.198_{6}	0.171_{5}	$\mathbf{0.052_1}$	0.059_{4}	0.057_2	0.059_{3}
$c10$ _resnet110	0.098_{6}	0.043_{5}	$\mathbf{0.032_1}$	0.039_{4}	0.037_{3}	0.036_{2}
$c10_resnet110_SD$	0.086_{6}	0.031_4	0.031_{5}	0.029_{3}	0.027_2	$\boldsymbol{0.027_1}$
$c10_resnet_wide32$	0.095_{6}	0.048_{5}	0.032_{3}	0.029_{2}	0.032_4	$\boldsymbol{0.029_1}$
c100_convnet	0.424_{6}	0.227_{1}	0.402_{5}	0.240_{3}	0.241_4	0.240_2
$c100_densenet40$	0.470_{6}	0.187_2	0.330_{5}	0.186_{1}	0.189_3	0.191_{4}
$c100_lenet5$	0.473_{6}	0.385_{5}	0.219_{4}	0.213_{2}	0.203_{1}	0.214_{3}
$c100$ _resnet110	0.416_{6}	0.201_3	0.359_{5}	0.186_{1}	0.194_2	0.203_{4}
$c100_resnet110_SD$	0.375_{6}	0.203_4	0.373_{5}	0.189_{3}	0.170_{1}	0.186_{2}
$c100_resnet_wide32$	0.420_{6}	0.186_4	0.333_{5}	0.180_{2}	0.171_{1}	0.180_{3}
SVHN_convnet	0.159_{6}	0.038_{4}	0.043_{5}	0.026_2	0.025_{1}	0.027_{3}
$SVHN_resnet152_SD$	0.019_2	0.018_{1}	0.022_{6}	0.020_{3}	0.021_{5}	0.021_{4}
Average rank	5.71	3.71	3.79	2.79	2.29	2.71

Log-loss

	general	-purpose	calibrators	calibrato	rs using logits
Uncal	TempS	Dir-L2	Dir-ODIR	VecS	MS-ODIR
0.391_{6}	0.195_{1}	0.197_{4}	0.195_{2}	0.197_{5}	0.196_{3}
0.428_{6}	0.225_{5}	$\mathbf{0.220_1}$	0.224_{4}	0.223_{3}	0.222_{2}
0.823_{6}	0.800_{5}	0.744_{2}	0.744_{3}	0.747_4	$\boldsymbol{0.743_1}$
0.358_{6}	0.209_{5}	$\mathbf{0.203_1}$	0.205_{3}	0.206_4	0.204_{2}
0.303_{6}	0.178_{5}	0.177_{4}	0.176_{3}	0.175_2	$\boldsymbol{0.175_1}$
0.382_{6}	0.191_{5}	0.185_{4}	0.182_{2}	0.183_{3}	$\mathbf{0.182_1}$
1.641_{6}	0.942_{1}	1.189_{5}	0.961_2	0.964_{4}	0.961_{3}
2.017_{6}	1.057_{2}	1.253_{5}	1.059_{4}	1.058_{3}	1.051_{1}
2.784_{6}	2.650_{5}	2.595_{4}	2.490_{2}	2.516_{3}	2.487_{1}
1.694_{6}	1.092_{3}	1.212_{5}	1.096_{4}	1.089_2	$\boldsymbol{1.074_1}$
1.353_{6}	0.942_{3}	1.198_{5}	0.945_{4}	0.923_{1}	0.927_{2}
1.802_{6}	0.945_{3}	1.087_{5}	0.953_{4}	0.937_2	0.933_{1}
0.205_{6}	0.151_{5}	0.142_{3}	0.138_2	0.144_{4}	0.138_{1}
0.085_{6}	0.079_{1}	0.085_{5}	0.080_{2}	0.081_4	0.081_{3}
6.0	3.5	3.79	2.93	3.14	1.64

Conclusion

- 1. Dirichlet calibration: New parametric general-purpose multiclass calibration method
 - a. Natural extension of two-class Beta calibration
 - b. Easy to implement with multinomial logistic regression on log-transformed class probabilities
- 2. Best or tied best performance with 21 datasets x 11 classifiers
- 3. Advances state-of-the-art on Neural Networks by introducing ODIR regularisation

Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp, Telmo Silva Filho, Hao Song, Peter Flach

NeurIPS 2019

